Abstract

The purpose of this study is to determine whether single-phase contrast-enhanced dual-energy quantitative spectral analysis improves the accuracy of diagnosis of small (< 4.0 cm) renal lesions, compared with conventional single-energy attenuation measurements. In this retrospective study, 136 consecutive patients (95 men and 41 women; mean age, 54 years) with 144 renal lesions (111 benign and 33 malignant) underwent single-energy unenhanced and dual-energy contrast-enhanced CT of the abdomen. For each renal lesion, attenuation measurements were obtained, and an attenuation change of 15 HU or greater was considered evidence of enhancement. Dual-energy spectral attenuation curves were generated for each lesion. The slope of each curve was measured between 40 and 50 keV (λHU40-50), 40 and 70 keV (λHU40-70), and 40 and 140 keV (λHU40-140). Mean lesion attenuation values and spectral attenuation curve parameters were compared between benign and malignant renal lesions by use of the two-sample t test. Diagnostic accuracy was assessed and validated using cross-validation analysis. With the use of cross-validated optimal thresholds at 100% sensitivity, specificity for differentiating between benign and malignant renal lesions improved significantly when both λHU40-70 and λHU40-140 were used, compared with conventional enhancement measurements (93% [103/111; 95% CI, 86-97%] vs 81% [90/111; 95% CI, 73-88%]) (p = 0.02). The sensitivity of λHU40-70 and λHU40-140 was also higher than that of conventional enhancement measurements, although it was not statistically significant. Single-phase contrast-enhanced dual-energy quantitative spectral analysis significantly improves the specificity for characterization of small (< 4.0 cm) renal lesions, compared with conventional single-energy attenuation measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.