Abstract

The static and dynamic holdups of liquid slag flow in a packed coke bed were investigated at a temperature of 1723 K by using the three-dimensional combined discrete element method and a computational fluid dynamics model. Coke particles with three different diameters (8, 14, and 22 mm) were considered. The simulation results for the static holdup agreed well with previously reported experimental results and the prediction values suggested by Jang et al. The simulation results for the dynamic holdup were compared with the values predicted using several water-model-based correlations. The simulation results for the dynamic holdup were slightly lower than the values predicted using the Fukutake model and the Otake and Okada model and were significantly higher than those predicted using the model proposed by Bando et al. The summation of the static and the dynamic holdups yielded the total holdup. With the increase of the modified capillary number (or particle size), the total holdup decreased monotonically, mainly owing to the considerable decrease in the static holdup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call