Abstract

Heat activation of dormant bacterial spores is a short treatment at a sublethal temperature that potentiates and synchronizes spore germination. In this paper, laser tweezers Raman spectroscopy (LTRS) was used to study the heat activation of single spores of Bacillus cereus and Bacillus subtilis. We measured the Raman spectra of single spores without treatment, during heat activation at 65 degrees C (B. cereus) or 70 degrees C (B. subtilis), and following heat activation and cooling to 25 degrees C. Principle component analysis (PCA) was applied to discriminate among the three groups of spores based on their Raman spectra. The results indicated that: (1) there are large changes in the Raman bands of Ca-DPA and protein for both B. cereus and B. subtilis spores during heat activation, indicative of changes in spore core state and partial protein denaturation at the heat activation temperatures; (2) these spectral changes become smaller once the heated spores are cooled, consistent with heat activation being reversible; (3) minor spectral differences between untreated and heat-activated and cooled spores can be discriminated by PCA based on non-polarized and polarized Raman spectra; and (4) analysis based on polarized Raman spectra reveals that partial denaturation of protein during heat activation is mainly observed in the vertically polarized component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.