Abstract
Based on their various interesting properties metal nanoparticles show the potential as analytical tool in electronic, optical, and catalytical applications. The different properties depending on composition, shape, and size of the single particles were utilized in many different approaches such as optics, magnetics and laser technology<sup>1</sup>. We present a way for enzymatic deposition of silver nanoparticles and a bioanalytical application in DNA microarray technology for this method. The technology consists of a microstructured chip with 10&mgr;m broad electrode gaps on the surface and specially designed readout device<sup>2</sup>. In principle we immobilize gold nanoparticle-labelled DNA in a gap between two electrodes. Afterwards a silver deposition on the bound gold nanoparticles generates a conductive layer between the electrodes. The measured drop in the resistance serves as signal for the chip-based electrical detection of DNA<sup>3</sup>. To further optimize this system the gold nanoparticles as seed are replaced by the enzyme horseradish peroxidase. For a better understanding of the enzymatically silver deposition process the formed silver particles were analyzed by spectroscopic characterization on a single particle level. Further investigations of these particles by AFM and SEM should give a hint to the connection between size/shape and the plasmonic properties at individual particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.