Abstract
Abstract The damage caused by marine fouling organisms to ships and underwater artificial equipment is becoming increasingly serious issue, and the prevention and control of marine biofouling has always been a research hotspot in marine coatings. Aiming at the problems of poor adhesion, long curing time and high curing temperature of low-surface energy marine antifouling coatings of organosilicon, a hydrophobic low-surface energy nano-SiO2/silicon acrylic resin nanocomposite coating was synthesized. The anticorrosive property of the composite coatings was analyzed by simulated seawater periodic immersion experiments. The gel permeation chromatography analysis showed that polydimethyl-siloxanes (PDMS) is involved in cross-linking reactions. The dynamic thermomechanical analysis indicated that the glass transition temperature of resin is 58 °C. The contact angle (CA) test showed that the CA of nanocomposite coating is 109.99°. All the detection results can support the excellent antifouling and anticorrosion performance of the low surface energy nanocomposite coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.