Abstract
Electrothermal plasma sources operating in the confined capillary arc regime are characterized by the magnitude and shape of the discharge current. The desired plasma parameters at the source exit, especially the pressure and heat flux, are highly dependent on the arc due to the effect of the arc radiant energy that ablates the inner wall of the source. These sources have applications in fusion as drivers for pellet injectors and as high heat flux sources for fusion materials studies. The high-pressure high heat flux flow is also of application in mass accelerators and launch technology systems. The 1-D, time-dependent ETFLOW capillary code models the plasma generation and flow inside the capillary discharges and determines the plasma parameters. The input file to the code is the discharge current density providing the Joule heating in the energy equation. A circuit module has been developed and incorporated in the code to generate desired current shapes and magnitudes. The current pulse length was varied between 5 and 100 μs at constant amplitude of 50 kA, and then the pulse amplitude was varied between 10 and 200 kA at a constant pulse length of 20 μs. Increasing the pulse length while maintaining its amplitude increases the plasma density and the total ablated mass, which have accumulation behavior by increasing the pulse length, and subsequently increases the exit pressure from 60 to 410 MPa in the cases studied herein. The pressure increase allows the thermalization of the plasma particles through more collisions, which reduces the plasma temperature by about 0.2 eV. The bulk velocity follows the trend of the plasma temperature, but at shorter pulse lengths the total ablated mass is lower and enables the plasma to carry the particles with increasing velocity. Increasing the pulse amplitude up to 200 kA increases the density to about 18 kg/m3 and the bulk velocity, which varies between 6.1 and 10.7 km/s. A sharp increase in most plasma parameters occurs as a result of the increase in the pulse amplitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.