Abstract

A significant cause of shigellosis in Bangladesh and other developing countries is Shigella flexneri serotype 6. This serotype has been subtyped, on the basis of the absence or presence of a group-specific antigen, E1037, into S. flexneri 6a and 6b, respectively. Here, we provided rationales for the subclassification, using several phenotypic and molecular tools. A set of S. flexneri 6a and 6b strains isolated between 1997 and 2015 were characterized by analyzing their biochemical properties, plasmid profiles, virulence markers, pulsed-field gel electrophoresis (PFGE) results, and ribotype. Additionally, the genomic relatedness of these subserotypes was investigated with global isolates of serotype 6 using publicly available genomes. Both subserotypes of S. flexneri 6 agglutinated with monoclonal antiserum against S. flexneri (MASF) B and type VI-specific antiserum (MASF VI) and were PCR positive for O-antigen flippase-specific genes and virulence markers (ipaH, ial, sen, and sigA). Unlike S. flexneri 6a strains, S. flexneri 6b strains seroagglutinated with anti-E1037 antibodies, MASF IV-I. Notably, these two antigenically distinct subserotypes were clonally diverse, showing two distinct PFGE patterns following the digestion of chromosomal DNA with either XbaI or IceuI. In addition, hybridization of a 16S rRNA gene probe with HindIII-digested genomic DNA yielded two distinguishing ribotypes. Genomic comparison of S. flexneri subserotype 6a and 6b strains from Bangladesh indicated that, although these strains were in genomic synteny, the majority of them formed a unique phylogroup (PG-4) that was missing for the global isolates. This study supports the subserotyping and emphasizes the need for global monitoring of the S. flexneri subserotypes 6a and 6b. IMPORTANCE Shigella flexneri serotype 6 is one of the predominant serotypes among shigellosis cases in Bangladesh. Characterization of a novel subserotype of S. flexneri 6 (VI:E1037), agglutinated with type 6-specific antibody and anti-E1037, indicates a unique evolutionary ancestry. PFGE genotyping supports the finding that these two antigenically distinct subserotypes are clonally diverse. A phylogenetic study based on single-nucleotide polymorphism (SNP) data revealed that these two subserotypes were in genomic synteny, although their genomes were reduced. Interestingly, a majority of the S. flexneri 6 strains isolated from Bangladesh form a novel phylogenetic cluster. Therefore, this report underpins the global monitoring and tracking of the novel subserotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.