Abstract

A study was carried out in France in collaboration with the meat industry to investigate the occurrence and characteristics of Shiga toxin-producing E. coli (STEC) and O157 E. coli in a population of healthy bovines representative of French livestock. A total of 851 animals belonging to three bovine classes (106 young bulls, 374 dairy cows and 371 meat cows) were included in the study. Samples of feces and of the corresponding carcasses were collected from March 97 to August 97 in seven abattoirs spread throughout the national territory. STEC cultures from the 1702 samples were screened using PCR for the presence of stx genes. Positive samples were further subjected to colony blot hybridization and to O157-specific immunomagnetic separation. Probe-positive colonies and O157 colonies were then analyzed for the presence of virulence genes and phenotypic characters (serotype, Stx production). In 154 (18.1%) feces and 91 (10.7%) carcass samples stx genes were detected. Two hundred and twenty-two STEC colonies were isolated from 67 (7.9%) feces and 16 (1.9%) carcass samples, with 183 STEC isolated from feces and 39 from carcasses. Only eight O157 isolates were collected from feces samples. None of these O157 E. coli isolates presented stx genes and thus could not be considered as pathogenic regarding hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). In 3.2% of STEC isolated from feces and in 10.2% of STEC from carcasses eae genes were detected. In 17% of STEC from feces and in 30.7% from carcasses ehx genes were detected. Using these data, the 222 STEC colonies could be classified in 11 different ‘virulence patterns’ (presence/absence of stx1, stx2, eae and ehx genes), showing that more than 77% of isolates presented only one virulence factor. Only three STEC on 222 colonies (1.3%) presented the three virulence factors stx, eae and ehx in association, none of them reacting with antisera specific for enterohemorrhagic E. coli. (EHEC). These data, together with the fact that only five isolates on the 222 (2.2%) reacted with such antisera (three O111 and two O26 isolates) demonstrated that the natural bacterial populations isolated during this study were clearly distinct from EHEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call