Abstract

Shale gas reservoirs develop multi-scale pores ranging in size from nanometer to micrometer, the characteristics of gas transport involve the multi-scale pore space which divided into organic and inorganic matrix pores. This paper reveals the shale pore structure with large amounts of organic mesoporous based on the techniques of focused ion beam scanning electron microscopes (FIB-SEM), high-pressure mercury intrusion (MICP), and low-pressure adsorption (LPA), which also shows the size and distribution of these pores. Then the research characterizes effective pore scale via circular tube bundle model with due regard for gas adsorption layer thickness on the walls of organic pores and water film thickness on the walls of inorganic pores, and the investigation of shale pore geometry is significant for designing and developing shale gas reservoirs. This work shows that the widely existing shale mesoporous volume with diameter of 2~50 nm accounts for 81% based on experimental testing, then it reduces to about 76% via effective diameter model calculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.