Abstract

The physical properties of substrates can have profound effects on the structure and function of cultured cells. In this study, we aimed to examine the viability, adherence, and morphological and functional variations between SH-SY5Y human neuroblastoma cells cultured on SU-8 surfaces compared with control surfaces composed of borosilicate glass, which are routinely used for cell culture. The SU-8 polymer has been extensively studied for its biocompatibility, but there has been little investigation into the characteristic differences between cells cultured on SU-8 when compared with glass. SH-SY5Y cells were cultured within polydimethylsiloxane wells on both SU-8 and glass substrates for up to 72 h after which flow cytometry and enzyme-linked immunosorbent assay analysis was performed to examine cell viability and neurotoxicity. Immunocytochemistry was also performed to analyze the morphological and functional characteristics of the cells. Atomic force microscopy was performed to measure surface roughness and to map cell-substrate interactions. Nanoindentation testing was used to characterize the mechanical properties of polymer surface. Results showed that SH-SY5Y cells grown on SU-8 have significantly improved viability and increased morphological and functional characteristics of neurodevelopment. The results from this study suggest that the mechanical properties of the polymer are optimal for the study of cultured cell lines, which could account for the increased viability, adherence, and morphological and functional characteristics of neurodevelopment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2129-2138, 2017.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.