Abstract

Biological sex impacts disease prevalence, severity and response to therapy in asthma, however preclinical studies often use only one sex in murine models. Here, we detail sex-related differences in immune responses using a house dust mite (HDM)-challenge model of acute airway inflammation, in adult mice of two different strains (BALB/c and C57BL/6NJ). Female and male mice were challenged (intranasally) with HDM extract (~ 25 μg) for 2 weeks (N = 10 per group). Increase in serum HDM-specific IgE showed a female bias, which was statistically significant in BALB/c mice. We compared naïve and HDM-challenged mice to define immune responses in the lungs by assessing leukocyte accumulation in the bronchoalveolar lavage fluid (BALF), and profiling the abundance of 29 different cytokines in BALF and lung tissue lysates. Our results demonstrate specific sex-related and strain-dependent differences in airway inflammation. For example, HDM-driven accumulation of neutrophils, eosinophils and macrophages were significantly higher in females compared to males, in BALB/c mice. In contrast, HDM-mediated eosinophil accumulation was higher in males compared to females, in C57BL/6NJ mice. Differences in lung cytokine profiles indicated that HDM drives a T-helper (Th)17-biased response with higher IL-17 levels in female BALB/c mice compared to males, whereas female C57BL/6NJ mice elicit a mixed Th1/Th2-skewed response. Male mice of both strains showed higher levels of specific Th2-skewed cytokines, such as IL-21, IL-25 and IL-9, in response to HDM. Overall, this study details sex dimorphism in HDM-mediated airway inflammation in mice, which will be a valuable resource for preclinical studies in allergic airway inflammation and asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.