Abstract

The proteins of the outer membrane of Neisseria gonorrhoeae play an important role in the serotyping system defined by K. H. Johnston et al. (J. Exp. Med. 143:741-758, 1976). This study attempted to delineate the molecular arrangement of the major proteins of the outer membrane of the gonococcus by using three approaches. First, natural protein-protein relationships were demonstrated by symmetrical, two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Second, proteins exposed on the surface of outer membrane vesicles were cross-linked by using the bifunctional reagents dimethyl-3,3'-dithiobispropionimidate and dithiobis[succinimidyl propionate]. Third, specific antigen-antibody interactions on the surface of membrane vesicles were analyzed by radioautographic techniques. The major proteins of the outer membrane of the gonococcus were defined, and a nomenclature was devised to take into account the effects of heat and reducing agents on the resolution of these proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Results of cross-linking experiments strongly suggest that two of the major proteins of the gonococcal outer membrane (proteins 1 and 3) form a hydrophobically associated trimeric unit in situ which can be stabilized by selective cross-linking reagents. Results substantiated that these proteins are responsible for imparting serotypic specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.