Abstract

In our previous studies, thin Ti-rich diffusion barrier layers were found to be formed at the interface between Cu(Ti) films and SiO2/Si substrates after annealing at elevated temperatures. This technique was called self-formation of the diffusion barrier, and is attractive for fabrication of ultralarge-scale integrated (ULSI) interconnects. In the present study, we investigated the applicability of this technique to Cu(Ti) alloy films which were deposited on low dielectric constant (low-k) materials (SiOxCy), SiCO, and SiCN dielectric layers, which are potential dielectric layers for future ULSI Si devices. The microstructures were analyzed by transmission electron microscopy (TEM) and secondary-ion mass spectrometry (SIMS), and correlated with the electrical properties of the Cu(Ti) films. It was concluded that the Ti-rich interface layers were formed in all the Cu(Ti)/dielectric-layer samples. The primary factor to control the composition of the self-formed Ti-rich interface layers was the C concentration in the dielectric layers rather than the enthalpy of formation of the Ti compounds (TiC, TiSi, and TiN). Crystalline TiC was formed on the dielectric layers with a C concentration higher than 17 at.%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.