Abstract

A seafloor laser scanner was deployed in the Gulf of Mexico during the 2013 Target and Reverberation Experiment (TREX13). This system collected digital elevation maps at 14 locations along the main reverberation track, and these measurements provide roughness power spectra for modeling seafloor acoustic scattering. The spectra were divided into two regimes according to the mid and high-frequency acoustic measurements made during the experiment. For the wave numbers corresponding to the midfrequency regime (2–4 kHz), the spectra could be approximated using the mean spectral exponent derived from the all of the spectra. With this spectral exponent, the best fit spectral strengths were found to be negatively correlated to the backscatter levels measured at 400 kHz using a multibeam echosounder (MBES). While the scattering mechanisms at 400 kHz are not influenced by the roughness at these low wave numbers, this correlation may be indirectly related to the bioturbation and the spatial variation of the shell content. A more pronounced correlation was found for the high wave numbers, where again a single spectral exponent could be used to a good approximation. In this case, the spectral strengths were also linearly related to the MBES backscattering level but with a positive correlation. For these wave numbers, the roughness is largely influenced by the shell content, which is also the dominant scattering mechanism at 400 kHz. The correlations between the roughness and the MBES measurements provide a means to approximate the seafloor roughness parameters in both wave number regimes throughout the experiment site. For the low wave number spectrum, an alternative approach is also proposed, which uses the spectral parameters for the mean spectrum to approximate the roughness throughout the TREX13 site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.