Abstract

The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques to replace the high-cost qualification procedure and to localize faults introduced by improper assembly. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum spaceframe covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Piezoelectric Active-sensing based wave propagation and frequency response function techniques were used in conjunction with finite element modeling to capture the dynamic properties of the test structure. Areas improperly assembled were identified and localized. This effort primarily focused on determining whether or not bolted joints on the structure were properly tightened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.