Abstract
The genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines. Subsequent to quality control, 8,373,854 bi-allelic variants identified by both pipelines remained for further analysis. A total of 34,652 ROH segments were identified in all individuals, among which shorter segments (0.3-1 Mb) were abundant throughout the genome, approximately accounting for 84.39% of all ROH. Within these segments, we identified 63 ROH islands housing 156 annotated genes. The genes located in ROH islands were associated with fur quality (EDNRA, FGF2, FOXA2 and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS and PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2 and TNIP3) and reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2 and HSPA4L). Furthermore, Gene Ontology and KEGG pathway enrichment analyses revealed 56 and 9 significant terms (FDR-corrected p-value < 0.05), respectively, among which cGMP-PKG signalling pathway, regulation of actin cytoskeleton, and calcium signalling pathway were highlighted due to their functional roles in growth and fur characteristics. This is the first study to present ROH islands in American mink. The candidate genes from ROH islands and functional enrichment analysis suggest possible signatures of selection in response to the mink breeding targets, such as increased body length, reproductive performance and fur quality. These findings contribute to our understanding of genetic characteristics, and provide complementary information to assist with implementation of breeding strategies for genetic improvement in American mink.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.