Abstract

In this study, PVD Ru–Mn composites were investigated in terms of major concerns that arise with the introduction of a new type of barrier. First, the Cu diffusion barrier performance after annealing at 600°C and under subsequent BTS of +2MV/cm, 250°C was investigated on SiO2, and after 350°C annealing on low-k dielectrics. Ru–Mn films proved to serve as outstanding Cu diffusion barrier over a wide range of Mn content. Second, the origin of the barrier performance was investigated using TEM, EELS and XPS depth profiling techniques, revealing the stuffing of grain boundaries as barrier mechanism. Third, Cu plating on damascene wafers applying a Ru–Mn seed layer was tested, and also the Cu adhesion thereon, resulting in a complete feature fill and excellent Cu wetting behavior. Fourth, the blocking of oxygen diffusion was examined, leading to a performance comparable to PVD TaN. Finally, the Mn content inside Ru was reduced down to 1at.% without compromising the superior material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.