Abstract

Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn superconductors are examined to select proper conductors for hybrid magnets outserts (that is a superconductor solenoid wound on the outside of a Bitter magnet) at the National High Magnetic Field Laboratory. The materials are subject to both thermal and mechanical stresses when in service. The stresses are complex due to the thermal contraction of the conduit applying extra stresses to the conductors. The final thermal stress levels can be well beyond the yield stress of some components in the superconductor composite and therefore plastic flow occurs in these components, such as Cu stabilizer and Cu-Sn matrix. If the plastic deformation strain is large, deformation strain in Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn superconductor filaments can be difficult to estimate. The differences in conductor design also render the estimation of the strain status difficult. It is well documented that the critical current is strongly affected by strain in the Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn superconductors. Therefore, we have characterized the microstructure and critical current of the superconductors with respect to the strain of various Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn superconductors. Other relevant properties are also measured and related to the fabrication, design and microstructure of the conductors. This paper reports our efforts in characterization of the Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn superconductors for hybrid magnets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call