Abstract
Let R be a commutative ring with unity. The prime ideal sum graph PIS ( R ) of the ring R is the simple undirected graph whose vertex set is the set of all nonzero proper ideals of R and two distinct vertices I and J are adjacent if and only if I + J is a prime ideal of R. In this paper, we study some interplay between algebraic properties of rings and graph-theoretic properties of their prime ideal sum graphs. In this connection, we classify non-local commutative Artinian rings R such that PIS ( R ) is of crosscap at most two. We prove that there does not exist a non-local commutative Artinian ring whose prime ideal sum graph is projective planar. Further, we classify non-local commutative Artinian rings of genus one prime ideal sum graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AKCE International Journal of Graphs and Combinatorics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.