Abstract

Riesz and Bessel potential spaces are studied within the framework of the Lebesgue spaces with variable exponent. It is shown that the spaces of these potentials can be characterized in terms of convergence of hypersingular integrals, if one assumes that the exponent satisfies natural regularity conditions. As a consequence of this characterization, we describe a relation between the spaces of Riesz or Bessel potentials and the variable Sobolev spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.