Abstract

Crosslinking is considered a possible approach to increasing the mechanical and structural stability and biodegradation resistance of the dentin collagen matrix. The aim of this study was to investigate the mechanical and chemical variations and collagen degradation resistance associated with crosslinking of the dentin collagen matrix with UVA-activated riboflavin. Dentin collagen matrix specimens were treated with 0.1 and 1% riboflavin for 2 min and photo-activated with 7 mW/cm2 UVA (368 nm) for 2 min. The structural change of the dentin collagen network with collagenase exposure was investigated by AFM and SEM at different time-points. The variations in surface/bulk mechanical properties and biodegradation resistance were characterized by nano-indentation, conventional mechanical testing, and hydroxyproline liberation at different time-points. Chemical changes associated with riboflavin/collagen-matrix interaction were analyzed by micro-Raman spectroscopy. UVA-activated riboflavin increased the mechanical properties, mechanical stability, and biodegradation resistance of the dentin collagen matrix. Higher collagen-network structural resistance against collagenolytic challenges was found with crosslinking. micro-Raman spectroscopy showed a strong dependency, in both intensity and wave-number, of certain Raman bands (1242-1667 cm-1) with crosslinking indicating the collagen/riboflavin interactions. UVA-activated riboflavin (1%) more efficiently crosslinked the dentin collagen matrix within a relatively clinically acceptable time-frame compared with 0.1% riboflavin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.