Abstract

Six rhizobia-like-bacterial strains in total, secluded from the root and stem nodules of various leguminous plants were characterized for growth promoting ability on ICCV 2 variety of chickpea. Bacterial strains showed production of IAA, NH3, siderophore, HCN, ACC deaminase, hydrolytic enzyme production such as chitinase, amylase, protease, lipase, β-1, 3-glucanase and solubilization of nutrients such as phosphate, zinc and potassium. However the performance of PGP traits characterized in-vitro varied among the six bacterial strains. The sequences of 16S rRNA gene of bacterial strains IHSR, IHRG, IHAA, IHGN-3, IHCP-1 and IHCP-2 showed maximum identity with Rhizobium sp., Rhizobium tropici, Rhizobium multihospitium, Mesorhizobium sp., Burkholderia cepacia and Rhizobium pusense. In plate culture conditions the bacterial strains changed the colour of media (NFB) from green to blue and showed amplification of nifH gene by PCR, and also enhanced nodule formation in chickpea under greenhouse conditions, which explains their nitrogen fixing ability. Scanning electron microscopy studies of chickpea roots showed colonization by all the six bacterial strains in solo and by consortium (IHRG + IHGN-3). Under greenhouse conditions, chickpea plants inoculated with different strains showed improvement in plant height, number of branches, total chlorophyll, nodule number, nodule weight, shoot weight, root weight, root volume and root surface area at 30 and 45 days after sowing (DAS) over the uninoculated control plants. It was also observed at the crop maturity stage all the bacterial strains inoculated separately enhanced pod number, seed number and total NPK compared to uninoculated control plants. This study suggests that bacteria associated with root and stem nodules can be a promising resource to enhance nodulation, PGP and crop yields in chickpea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call