Abstract
The study focuses on the characterization of Aluminum (Al-6061) coated with RF-sputtered Zinc Oxide (ZnO) thin film, aiming to understand the complex interactions between microstructure, wettability, cavitation resistance, and corrosion performance. The study involves the use of various analytical techniques such as Field Emission Scanning Electron Microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and water contact angle (WCA) measurements. The cavitation erosion testing has been conducted under various factors namely jet velocity (m/s), impingement angle (°), and stand-off distance (cm), respectively, and that too at various levels. Further, with the use of RSM, the study also contributes to the interplay in between factors and acquiring optimized results. Moreover, the findings of the study provide valuable insights into the effectiveness of the ZnO coating in enhancing corrosion resistance and reducing mass loss due to cavitation erosion. The study’s results offer significant implications for the engineering and design of protective coatings for Aluminum surfaces, with the potential to enhance durability and performance in various industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.