Abstract

Interindividual variation at genes known to play a role in reproduction may impact reproductive fitness. The Tasmanian devil is an endangered Australian marsupial with low genetic diversity. Recent work has shown concerning declines in productivity in both wild and captive populations over time. Understanding whether functional diversity exists at reproductive genes in the Tasmanian devil is a key first step in identifying genes that may influence productivity. We characterized single nucleotide polymorphisms (SNPs) at 214 genes involved in reproduction in 37 Tasmanian devils. Twenty genes contained nonsynonymous substitutions, with genes involved in embryogenesis, fertilization and hormonal regulation of reproduction displaying greater numbers of nonsynonymous SNPs than synonymous SNPs. Two genes, ADAMTS9 and NANOG, showed putative signatures of balancing selection indicating that natural selection is maintaining diversity at these genes despite the species exhibiting low overall levels of genetic diversity. We will use this information in future to examine the interplay between reproductive gene variation and reproductive fitness in Tasmanian devil populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call