Abstract

In this study, the Time-Temperature-Crystallinity Superposition Principle (TTCSP) was applied to determine the viscoelastic behavior of Thermo-rheological Complex Materials (TCM), specifically Carbon fibre/Poly-Ether-Ketone-Ketone (CF/PEKK) composites. The study investigated the effects of various parameters on the viscoelastic behavior of the composites, such as the degree of crystallinity after different melting temperatures, relaxation, and crystallization times. The TTCSP was utilized on the relaxation data to generate great-grand master curves for the degree of crystallinity for different laminate lay-ups. Hot press forming was employed to manufacture samples under different processing conditions, including various melting and cold crystallization temperatures. Differential Scanning Calorimetry (DSC) was employed to calculate the degree of crystallinity of CF/PEKK composites, while the Dynamic Mechanical Analyzer (DMA) was used to obtain the relaxation data. The generated great-grand master curves proved effective in predicting the relaxation behavior of the composites consolidated using single and double hold cycles at different melting temperatures and crystallization times, respectively. The great-grand master curves presented in this study can serve as valuable tool to calibrate key viscoelastic and/or thermo-viscoelastic material models for aerospace-grade CF/PEKK composites. These models are crucial for simulations aimed at predicting residual stresses and process-induced deformations during the thermoforming process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.