Abstract

Colloids are an important component of wines, but their study is challenging due to their instability. Asymmetrical Flow-Field Flow Fractionation (AF4)-multidetection is here proposed as a suitable approach to isolate and characterize red wine colloids in native state. AF4 provided size-separation and enabled quantification of the colloidal content of two wines. The gyration radius of colloids was determined by multi-angle light scattering, and ranged between 25 and 50 nm. Analysis of the collected AF4-fractions showed that proteins, polysaccharides and phenolics were present in different proportions among fractions. The composition of AF4-fractions differed between wines. SDS-PAGE analysis of AF4-fractions indicated the presence of protein-phenolics sub-aggregates only in the fractions containing colloids with small radius. The results allowed proposing a model for red wine colloids structure, which comprises two coexisting entities, one made of covalently linked proteins-phenolics sub-aggregates interacting by non-covalent forces with polysaccharides, and a second in which only polysaccharides and phenolics are present. The proposed model is consistent with the reported relative stability of red wine proteins, a fact that can be due to the stabilizing activity of polysaccharides. Given that enological practices affect the extraction of proteins, polysaccharides and phenolics, AF4-technique represents a very promising tool to investigate the effects of these practices on wine colloidal aggregation and behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call