Abstract

Red sand dust pollution is of great concern for its occupational and environmental detriments. The current remediation technique includes water spray and non-traditional stabilization via the application of polymer stabilizers. The dust erosion resistance plays a significant role in quantifying the effectiveness of red sand dust suppression. The aim of this paper is to evaluate the reliability and accuracy of five static and dynamic laboratorial methods that are commonly utilized to quantify the dust erosion resistance in the presence of polymers in previous studies, which are wind tunnel simulation, dynamic viscosity test, crust thickness test, penetration resistance test, and unconfined compressive strength test. The advantages and shortcomings of these methods were comprehensively demonstrated. The results illustrated that the penetration resistance test is the most reliable method in terms of the highest accuracy and relatively simpler operation. It also reveals excellent universality for effectively quantifying the dust erosion resistance of red sand with different particle sizes and for different polymers with various concentrations, while the rest of the methods failed to identify. The application of polymers contributes to improved dust erosion resistance for longer crust failure time, higher solution dynamic viscosity and crust penetration resistance, and higher unconfined compressive strength of rending sand samples. PAM outperformed guar gum and xanthan gum on the base of polymer ionicity and molecular weight. This study offers a better understanding in guiding the selection of optimum evaluation methods and polymers for the study of bauxite residue dust control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.