Abstract

Glucosinolates are plant secondary metabolites that are part of a plant defence system against pathogens and pests, the myrosinase-glucosinolate system, in which glucosinolates get activated by enzymic degradation through thioglucoside glucohydrolases called myrosinases. Epithiospecifier protein (ESP) and nitrile-specifier proteins (NSPs) divert myrosinase-catalyzed hydrolysis of a given glucosinolate from the formation of isothiocyanate to that of epithionitrile and/or nitrile. As the biological activity of glucosinolate hydrolysis products varies considerably, a detailed characterization of these specifier proteins is of utmost importance to understand their biological role. Therefore, the Arabidopsis thaliana AtNSP1, AtNSP2 and AtNSP5 and a supposed ancestor protein AtNSP-like1 were expressed in Escherichia coli and the activity of the purified recombinant proteins was tested in vitro on three highly different glucosinolates and compared to that of purified AtESP. As previously reported, only AtESP showed epithiospecifier activity on 2-propenylglucosinolate. We further confirmed that purified AtNSP1, AtNSP2 and AtNSP5, but not the ancestor AtNSP-like1 protein, show nitrile-specifier activity on 2-propenylglucosinolate and benzylglucosinolate. We now show for the first time that in vitro AtNSP1, AtNSP2 and AtNSP5 are able to generate nitrile from indol-3-ylmethylglucosinolate. We also tested the effect of different Fe(II) ion concentrations on the nitrile-specifier activity of purified AtNSP1, AtNSP2 and AtNSP5 on 2-propenylglucosinolate and benzylglucosinolate. AtNSP-related nitrile production was highly dependent on the presence of Fe(II) ions in the reaction assay. In the absence of added Fe(II) ions nitriles were only detected when benzylglucosinolate was incubated with AtNSP1. While AtNSP1 also exhibited overall higher nitrile-specifier activity than AtNSP2 and AtNSP5 at a given Fe(II) ion concentration, the pattern of nitrile formation in relation to Fe(II) ion concentrations depended on the AtNSP and the glucosinolate substrate. The pH of the solution also affected the reaction outcome, with a higher proportion of nitrile being produced at the higher pH for AtNSP2 and AtNSP5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.