Abstract

Charge heterogeneity is an important aspect of research into the development of monoclonal antibody drugs. In the present study, charge variants were separated into four fractions using weak cation exchange chromatography and were thoroughly analyzed using liquid chromatography–mass spectrometry at multiple levels. Molecular weight analysis of intact antibody and subunits confirmed the presence of heavy-chain leader sequences, light-chain leader sequences, dehydration, and cysteinylation. Peptide mapping of the fractions using different enzymes further localized the modified sites. Modified proportions identified at peptide level were compared with the purity detected by imaged capillary isoelectric focusing, the results showed that basic variant 1 consisted of cysteinylation and dehydration of asparagine, and basic variant 2 fully accounted for the N-terminal leader sequence of the heavy chain. About 14.8% of the acidic variant can be explained by N-terminal leader sequences in the light chain, and 18% of the acidic variant was demonstrated to be deamidation of asparagine in the heavy chain. There was approximately 54.2% of the acidic variant still cannot be explained. It was hypothesized that those acidic variants that have not yet been identified are an ensemble of molecules with slight molecular weight differences or the same molecular weight but different structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call