Abstract

Lignocellulosic fibers present several advantages over synthetic fibers, such as low cost and biodegradability. In this work the tensile mechanical behavior of as-received and surface treated curaua fibers was analyzed. Mercerization and three different enzyme surface treatments were used. The tensile stress data were analyzed using the Weibull statistical distribution, and SEM was used to characterize the surface modifications caused by the treatments. The results show that mercerization causes an increase of the deformation capacity of the fibers. This result was attributed to the removal of hemicellulose, and to an increase of mobility of the internal fibrils. The increase of NaOH concentration at the alkali solution affects both the surface characteristics and the tensile properties. Solutions with more than 5%wt NaOH degraded the fibers. The enzyme treatments increase the tensile mechanical properties, but also increase their brittleness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.