Abstract
This paper addresses quaternionic dual Gabor frames under the condition that the products of time‐frequency shift parameters are rational numbers. For a general overcomplete quaternionic Gabor frame with the product of time‐frequency shift parameters not equal to , we show that its corresponding frame and translation operators do not commute, which leads to its canonical dual frame not having the Gabor structure, but it may have other dual frames with Gabor structure. We characterize when two quaternionic Gabor Bessel sequences form a pair of dual frames, and present a class of quaternionic dual Gabor frames. We also characterize quaternionic Gabor Riesz bases and prove that their canonical dual frames have Gabor structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.