Abstract

In the field of military land vehicles, random vibration processes generated by all-terrain wheeled vehicles in motion are not classical stochastic processes of a stationary and Gaussian nature. The non-Gaussian nature of the processes is expressed in particular by very significant flattening levels that can affect the fatigue design of mechanical structures, conventionally acquired by spectral approaches, based essentially on spectral moments of stress processes. Due to these technical considerations, techniques for the characterization of random excitation processes generated by this type of driving situation need to be developed, by proposing innovative characterization methods no longer based on deterministic spectral and/or temporal approaches but on temporal approaches of a stochastic nature. Indeed, to characterize the fatigue damage produced by non-stationary and non-Gaussian random processes, the author shows that it is now necessary to mix time-counting techniques used in the field of vibration fatigue with those of the sampling statistics used in estimation theory. This approach makes it possible to extrapolate favorably over time the level of damage to structures, from a statistical perspective, when this extrapolation phase is in practice carried out deterministically. This technique, referred to as the disjoint block method (BDM), has been tested successfully in the context of component specification techniques from the reliability standpoint since 2010, and just recently integrated AFNOR standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.