Abstract

Raffia palm fibers are potential reinforcement materials for making cost-effective polymer-based composite. This paper presents the results obtained from a study of physical, chemical, thermal and mechanical properties of raffia palm fibers (RPFs) derived from the raffia palm tree (Raphia farinifera). The as-received RPFs had their remnant binders manually removed and was subsequently cleaned in a 2% detergent solution before drying in an air oven at 70 °C for 24 h. Evaluation of the properties of the dried samples was carried out using a combination of characterization techniques including chemical composition determination, density measurement, moisture adsorption and water absorption measurements, tensile testing, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Raman spectroscopy, X-ray diffractometry, and Fourier transform infrared spectromicroscopy. The main constituents of RPFs were found to be cellulose, hemicellulose and lignin. The average diameter and average density were 1.53 ± 0.29 mm and 1.50 ± 0.01 g/cm3, respectively. The average breaking strength of the fibers ranged from 152 ± 22 to 270 ± 39 MPa; it did not vary significantly with fiber length and cross-head speed during tensile testing. The results of scanning electron microscopic investigation of the fibers showed that they comprise several elemental fibers which are tightly packed together with each having its own lumen. Synchrotron-based Fourier-transform infrared spectromicroscopy of a cross-section of the fiber showed that lignin is concentrated mostly on the outside while cellulose and pectin are concentrated in the mid-section. A two-stage water sorption behavior was observed for the fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call