Abstract

In this article, we examine characteristics of quantum dynamically important paths using the on-the-fly filtered propagator functional path integral method, which evaluates a numerically accurate reduced density matrix by ignoring the vast majority of paths with insignificant contribution to the dynamics of interest. Two five-state charge-transfer systems have been considered, such that each system is governed by a different charge-transfer mechanism. It was found that, for the incoherent hopping transfer, the quantum mechanically important paths mimic classical counterparts that show little deviation between forward and backward path. Therefore, it is desirable to take advantage of a priori knowledge of the important path characteristics; in particular, it is possible to evaluate the accurate dynamics of bridge-mediated long-range charge-transfer systems efficiently in a significantly reduced quantum mechanical trajectory space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.