Abstract

Melanin is a biopolymer with versatile structural and functional properties and diverse applications in recovering toxic chemicals from water and wastewater, biomedical imaging, and as theragnostic agent. We report the structural characterization and biosynthetic pathway of an extracellular pyomelanin secreted by a sponge-associated bacterium, Shewanella sp. (Shewanella-melanin), and their potential application in metal recovery from liquid. Pyomelanin particles of > 50µm size were found in the culture medium within 48h of growth, which were formed through the self-polymerization of benzoquinone molecule produced through homogentisic acid pathway. The aspC and hppD genes involved in the biosynthetic pathway of pyomelanin were detected in the whole genome sequence of Shewanella sp. The FT-IR spectra of Shewanella-melanin, at ~ 3300-3420cm-1 corresponding to the stretching vibration of -NH and -OH, was in good agreement with that of Sepia melanin, while its elemental composition (C/N/H/S of 29.2:8.23:6.41:1.58) was unique. Shewanella-melanin showed ~ 300 and ~ 950 times increased chelation of manganese and iron from a liquid medium supplemented with 2mM of MnSO4 and FeSO4, respectively, compared to a control. The FT-IR spectrum showed the binding of metal ions to the carboxylic acid, hydroxyl, and amine groups of Shewanella-melanin. The Shewanella-melanin, with its excellent metal biosorption, could be a potential candidate for removing toxic compounds from water, in turn contributing to the fulfillment of sustainable development goal (SDG) 6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call