Abstract

The contracting and relaxing effects of purines and UTP were investigated on rings of mouse thoracic aorta in vitro. UTP, ATP gamma S, and alpha-beta-Methyleneadenosine 5'triphosphate contracted rings with and without endothelium. On the contrary, adenosine, AMP, ADP, ATP, and 2-(methylthio)adenosine 5'-diphosphate had no effect on relaxed rings. When rings were tonically contracted by U46619 a thromboxane A2 analogue, ATP, ADP, ATP gamma S, 2-(methylthio)adenosine 5'-diphosphate, and UTP caused endothelium-dependent but not independent relaxations.I conclude that ATP acts on P2Y2 and P2Y1 receptors on the endothelial cells to cause endothelium-dependent relaxation. In this tissue, the relaxing effect of ATP dominates by endothelium-dependent ways when aorta rings are contracted by a stable thromboxane A2 analog. However receptors mediating contraction in response to purines and pyrimidines are present on smooth muscle cells. Indeed, the stimulation of P2Y receptors by UTP as well as the activation of P2X family receptors by ATP gamma S causes a contraction. The potential contractile effect of ATP seems masked by its hydrolysis by ectonucleotidases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.