Abstract

The low bioavailability of nutrients and oxygen in the soil environment has hampered successful expression of biodegradation and biocontrol genes that are driven by promoters highly active during routine laboratory conditions of high availability of nutrients and oxygen. Hence, in the present study, expression of the gus-tagged genes in 12 Tn5-gus mutants of the soil microbe Pseudomonas putida PNL-MK25 were examined under various conditions chosen to mimic the soil environment: low carbon, phosphate, nitrate or oxygen, and in the rhizosphere. Based on their expression profiles, three nutrient-responsive mutant (NRM) strains, NRM5, NRM7 and NRM17, were selected for identification of the tagged genes. In strain NRM5, expression of the glutamate dehydrogenase (gdhA) gene was increased 4.9-26.4-fold under various low-nutrient conditions. In NRM7, expression of the novel NADPH : quinone oxidoreductase-like (nql) gene was consistently amongst the highest and was synergistically upregulated by low-nutrient and anoxic conditions. The cyoD gene in NRM17, which encodes the fourth subunit of the cytochrome o ubiquinol oxidase complex, had decreased expression in low-nutrient conditions but its absolute expression level was still amongst the highest. Additionally, it was independent of oxygen availability, in contrast to that in Escherichia coli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.