Abstract
This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam. A novel silicon microdosimeter with well-defined 3D SVs was used in this study. It was connected to low noise electronics, allowing for detection of lineal energies as low as 0.15keV/μm. The microdosimeter was placed at various depths in a water phantom along the central axis of the proton beam, and at the distal part of the spread-out Bragg peak (SOBP) in 0.5mm increments. The RBE values of the pristine Bragg peak (BP) and SOBP were derived using the measured microdosimetric lineal energy spectra as inputs to the modified microdosimetric kinetic model (MKM). Geant4 simulations were performed in order to verify the calculated depth-dose distribution from the treatment planning system (TPS) and to compare the simulated dose-mean lineal energy to the experimental results. For a 131MeV PBS spot (124.6mm R90 range in water), the measured dose-mean lineal energy yD¯ increased from 2keV/μm at the entrance to 8keV/μm in the BP, with a maximum value of 10keV/μm at the distal edge. The derived RBE distribution for the PBS beam slowly increased from 0.97±0.14 at the entrance to 1.04±0.09 proximal to the BP, then to 1.1±0.08 in the BP, and steeply rose to 1.57±0.19 at the distal part of the BP. The RBE distribution for the DS SOBP beam was approximately 0.96±0.16 to 1.01±0.16 at shallow depths, and 1.01±0.16 to 1.28±0.17 within the SOBP. The RBE significantly increased from 1.29±0.17 to 1.43±0.18 at the distal edge of the SOBP. The SOI microdosimeter with its well-defined 3D SV has applicability in characterizing proton radiation fields and can measure relevant physical parameters to model the RBE with submillimeter spatial resolution. It has been shown that for a physical dose of 1.82Gy at the BP, the derived RBE based on the MKM model increased from 1.14 to 1.6 in the BP and its distal part. Good agreement was observed between the experimental and simulation results, confirming the potential application of SOI microdosimeter with 3D SV for quality assurance in proton therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.