Abstract
Ionized acetates were used as model compounds to describe gas-phase behavior of oxygen containing compounds with respect to their formation of dimers in ion mobility spectrometry (IMS). The ions were created using corona discharge at atmospheric pressure and separated in a drift tube before analysis of the ions by mass spectrometry. At the ambient operational temperature and pressure used in our instrument, all acetates studied formed dimers. Using a homolog series of n-alkyl-acetates, we found that the collision cross section of a dimer was smaller than that of a monomer with the same reduced mass. Our experiments also showed that the reduced mobility of acetate dimers with different functional groups increased in the order n-alkyl <or= branched chain alkyl <or= cyclo alkyl < aromat. For mixed n-alkyl dimers we found that the reduced mobility of acetate dimers having the same number of carbons, for example a dimer of acetyl acetate and hexyl acetate has the same reduced mobility as a dimer composed of two butyl acetates. The fundamental behavior of acetate monomers and dimers described in this paper will assist in a better understanding of the influence of dimer formation in ion mobility spectrometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.