Abstract

Amine transaminases (ATA) convert ketones into optically active amines and are used to prepare active pharmaceutical ingredients and building blocks. Novel ATA can be identified in protein databases due to the extensive knowledge of sequence-function relationships. However, predicting thermo- and operational stability from the amino acid sequence is a persisting challenge and a vital step towards identifying efficient ATA biocatalysts for industrial applications. In this study, we performed a database mining and characterized selected putative enzymes of the β-alanine:pyruvate transaminase cluster (3N5M) — a subfamily with so far only a few described members, whose tetrameric structure was suggested to positively affect operational stability. Four putative transaminases (TA-1: Bilophilia wadsworthia, TA-5: Halomonas elongata, TA-9: Burkholderia cepacia, and TA-10: Burkholderia multivorans) were obtained in a soluble form as tetramers in E. coli. During comparison of these tetrameric with known dimeric transaminases we found that indeed novel ATA with high operational stabilities can be identified in this protein subfamily, but we also found exceptions to the hypothesized correlation that a tetrameric assembly leads to increased stability. The discovered ATA from Burkholderia multivorans features a broad substrate specificity, including isopropylamine acceptance, is highly active (6 U/mg) in the conversion of 1-phenylethylamine with pyruvate and shows a thermostability of up to 70 °C under both, storage and operating conditions. In addition, 50% (v/v) of isopropanol or DMSO can be employed as co-solvents without a destabilizing effect on the enzyme during an incubation time of 16 h at 30 °C.Key points• Database mining identified a thermostable amine transaminase in the β-alanine:pyruvate transaminase subfamily.• The tetrameric transaminase tolerates 50% DMSO and isopropanol under operating conditions at 30 °C.• A tetrameric structure is not necessarily associated with a higher operational stabilityGraphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.