Abstract

Macrophage activation for tumoricidal and microbicidal functions can be achieved in part by treatment with recombinant interferon gamma (IFN gamma) in vitro. We have previously demonstrated that IFN gamma treatment of murine peritoneal macrophages results in a two- to five-fold increase in the activity of Ca++, phospholipid dependent protein kinase C (Hamilton et al., J. Biol. Chem., 260:1378, 1985). We now report that this effect was not dependent upon continuing protein synthesis since treatment with cycloheximide under conditions where normal protein synthesis was inhibited by greater than 95% had no effect upon the development of increased enzyme activity. Examination of Ca++ and phospholipid requirements revealed no differences between enzyme isolated from control or IFN gamma treated cells. Similarly, protein kinase C from control and IFN gamma-treated cells could not be distinguished in terms of the diacylglycerol (DG) or phorbol diester (PMA) concentration required for stimulation of activity. Kinetic analysis of the ATP (as substrate) concentration dependence revealed that both control and treated enzyme preparations (either basal or stimulated) had comparable Km values. Maximum velocity (Vmax) was increased both by IFN gamma treatment and also by stimulation with DG or PMA. The major difference which could be discerned between protein kinase C derived from control versus IFN gamma-treated macrophages was the magnitude of the response to DG or PMA; IFN gamma treatment increased the stimulation index (i.e., ratio of basal to stimulated activity) by a factor of two to four fold. These results suggest that IFN gamma treatment leads to reversible modulation of existing protein kinase C resulting in increased catalytic efficiency when exposed to an appropriate stimulant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call