Abstract

A growing number of important molecular recognition events are being shown to involve the interactions between proteins and glycolipids. Glycolipids are molecules in which one or more monosaccharides are glycosidically linked to a lipid moiety. The lipid moiety is generally buried in the cell membrane or other bilayer, leaving the oligosaccharide moiety exposed but in close proximity to the bilayer surface. This presents a unique environment for protein-carbohydrate interactions, and studies to determine the influence of the bilayer on these phenomena are in their infancy. One important property of the bilayer is the ability to orient and cluster glycolipid species, as strong interactions in biological systems are often achieved through multivalency arising from the simultaneous association of two or more proteins and receptors. This is especially true of protein-carbohydrate binding because of the unusually low affinities that characterize the monovalent interactions. More recent studies have also shown that the composition of the lipid bilayer is a critical parameter in protein-glycolipid recognition. The fluidity of the bilayer allows for correct geometric positioning of the oligosaccharide head group relative to the binding sites on the protein. In addition, there are activity-based and structural data demonstrating the impact of the bilayer microenvironment on the modulation of oligosaccharide presentation. The use of model membranes in biosensor-based methods has supplied decisive evidence of the importance of the membrane in receptor presentation. These data can be correlated with three-dimensional structural information from X-ray crystallography, NMR, and molecular mechanics to provide insight into specific protein-carbohydrate inter--actions at the bilayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.