Abstract

The aim of this study was to characterize factor(s) in rat bronchoalveolar lavage fluid (BALF) that enhance(s) insulin transport across primary rat alveolar epithelial cell monolayers (RAECM) in primary culture. BALF was concentrated 7.5-fold using the Centricon device and the retentate was used to characterize the factor(s) involved in enhancing apical-to-basolateral transport of intact 125I-insulin across various epithelial cell monolayers. These factor(s) enhanced transport of intact insulin across type II cell-like RAECM (3-fold increase) and type I cell-like RAECM (2-fold increase), but not across Caco-2 or MDCK cell monolayers. The insulin transport-enhancing factor(s) were temperature- and trypsin-sensitive. The mechanism of enhancement did not seem to involve paracellular transport or fluid-phase endocytosis, since fluxes of sodium fluorescein and FITC-dextran (70 kDa) were not affected by the factor(s) in the apical bathing fluid. BALF enhancement of intact 125I-insulin transport was abolished at 4 °C and in the presence of monensin, suggesting involvement of transcellular pathways. Sephacryl S-200 purification of BALF retentate, followed by LC-MS/MS, indicated that the high molecular weight (>100 kDa) fractions (which show some homology to alpha-1-inhibitor III, murinoglobulin gamma 2, and pregnancy-zone protein) appear to facilitate transcellular transport of insulin across RAECM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.