Abstract

In grass seedlings the network of cortical microtubules is reorganized during light-dependent growth of coleoptiles and mesocotyls. We investigated the effects of light-dependent growth on the relative steady-state levels of the mRNAs and protein levels of alpha-tubulin and the epsilon-subunit of the chaperonin containing tailless complex protein-1 in oat (Avena sativa) coleoptiles, which were grown in different light conditions to establish different growth responses. The soluble pools of the epsilon-subunit of the chaperonin containing tailless complex protein-1 and alpha-tubulin decreased in nonelongating coleoptiles, suggesting that the dynamics of the light-regulated soluble pool reflect the processes occurring during reorganization of cortical microtubules. The shifts in pool sizes are discussed in relation to the machinery that controls the dynamic structure of cortical microtubules in plant cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.