Abstract
Proximal tubules were prepared from rat kidney cortex by collagenase digestion and purified by Percoll gradient centrifugation. Their enrichment was estimated by comparing the specific activities of various cell-specific enzymes in homogenates of renal cortex and of the isolated tubules. The tubules were cultured in a 50:50 mixture of Dulbecco's modified Eagle's and Ham's F12 media supplemented with insulin, transferrin, epidermal growth factor, hydrocortisone, and prostaglandin E1. After 2 to 3 d an extensive outgrowth of epithelial cells developed from the attached tubules. After 5 to 7 d near confluent monolayers were obtained. Hormonal responsiveness, marker enzyme activities, and transport properties were determined to further characterize the primary cultures. The cultured cells exhibited increased cyclic AMP production in response to parathyroid hormone but not calcitonin or vasopressin, consistent with the absence of cells derived from distal and collecting tubules. The cells also retained significant levels of 25-hydroxyvitamin D3-1 alpha-hydroxylase, alkaline phosphatase, and gamma-glytamyl-transpeptidase, three enzymes that are primarily associated with the proximal tubule. The cultured epithelial cells also exhibit a Na+-dependent phosphate and glucose transport systems. Therefore, the cells retain many functional properties that are characteristic of proximal tubules. Thus, the primary cultures should be suitable for the study of processes that occur specifically within this segment of the rat nephron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.