Abstract

Raster ion imaging of the oxygen isotopes with the NanoSIMS ion microprobe has been used to identify presolar grains in two primitive meteorites. Eleven presolar silicates and eight presolar oxides were identified in the primitive carbonaceous chondrite Acfer 094 for abundances of 325 and 360 parts per million (ppm), respectively. In addition, nine presolar silicates and five presolar oxide grains were identified in the CO3 chondrite ALHA 77307, for abundancesof 320and200ppm,respectively.Theseabundances,whicharematrix-normalizedandcorrectedforinstrumental detectionefficiencies,aremuchhigherthanthoseofotherpresolarphases,withtheexceptionof nanodiamonds,although the latter may not all be presolar. The chemical compositions of six presolar silicate grains from ALHA 77307 were elucidated by Auger spectroscopy. Transmission electron microscopy (TEM) analysis of one presolar silicate grain revealed a nonstoichiometric composition and an amorphous structure as indicated by the diffuse electron diffraction pattern. The oxygen isotopic compositions of the presolar silicates indicate origins in red giant and asymptotic giant branch stars. Analysis of the Si isotopic compositions of 10 presolar silicates provides further constraints on the effects of Galactic chemical evolution. Subject headingg circumstellar matter — dust, extinction — Galaxy: evolution — nuclear reactions, nucleosynthesis, abundances — stars: evolution

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.