Abstract

The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 °C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call