Abstract

In Pompe disease, a genetic deficiency of lysosomal acid α-glucosidase, glycogen accumulates abnormally in the lysosomes of skeletal, cardiac and smooth muscle, and contributes to clinically progressive and debilitating muscle weakness. The present study involved 8 infantile-onset Pompe patients, treated weekly with 10 mg/kg of recombinant human acid α-glucosidase (rhGAA). Muscle biopsies were obtained at baseline, 12 and 52 weeks post-treatment to establish an indicator of efficacy. Several histologic strategies were employed to characterize changes in pre- and post-treatment samples, including high-resolution light microscopy and digital histomorphometry, electron microscopy, capillary density and fiber type analysis, and confocal microscopy for satellite cell activation analysis. Histomorphometric analysis was performed on muscle samples to assess glycogen depletion in response to enzyme replacement therapy (ERT). The extent of glycogen clearance varied widely among these patient samples, and correlated well with clinical outcome. Low glycogen levels, mild ultrastructural damage, a high proportion of type I fibers, and young age at baseline were all features associated with good histologic response. There was no correlation between capillary density and glycogen clearance, and activated satellite cell levels were shown to be higher in post-treatment biopsies with poor histologic responses. This histopathologic study of infantile Pompe disease provides detailed insight into the cellular progression of the disease and its response to therapy while highlighting a number of methodologies which may be employed to assess regression or progression of the associated pathology. As enzyme replacement therapy becomes more prevalent for the treatment of lysosomal storage diseases, such evaluation of post-treatment pathology will likely become a more common occurrence in the daily practice of pathologists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.