Abstract

Orthogonal frequency division multiplexing (OFDM) has been adopted in many modern communication systems due to its robustness against frequency-selective fading channels as well as its near-rectangular spectrum that can achieve high spectral efficiency. However, its major drawback is the resulting signal with high peak-to-average power ratio (PAPR), which causes severe nonlinear distortion at the power amplifier (PA) unless input backoff is chosen sufficiently large. The effect of the nonlinear distortion is two-fold: out-of-band radiation and signal quality degradation. The former causes adjacent channel interference and thus degrades the bandwidth efficiency. The latter affects the system level performance and is often measured by the error vector magnitude (EVM). It is thus important for the system designer to analyze the nonlinear distortion caused by a given PA in terms of power spectral density (PSD) and EVM, but accurate calculation of these characteristics may be generally involved. In this work, by establishing the link between the cross-correlation coefficient of the input and output signals from PA and the resulting PSD, we characterize the in-band and out-of-band distortion of nonlinearly amplified OFDM signals based exclusively on the cross-correlation coefficient. The accuracy of the proposed approach is confirmed by both simulation and measurement using a real PA.

Highlights

  • As the mobile terminals become smaller while meeting their demand for communication with even higher data rate, the future wireless communication signals should satisfy high bandwidth efficiency without sacrificing power efficiency

  • We focus only on the out-of-band radiation caused by nonlinear distortion through examination of only one Orthogonal frequency-division multiplexing (OFDM) symbol for simplicity, and the effect of the spectral leakage caused by this windowing will not be considered

  • 5.4 Experimental setup In the case of the measurement using actual power amplifier (PA) where the basic configuration of the experimental setup is illustrated in Figure 4, the data used for generating the input OFDM signals are chosen to be the same as those used in the simulation process

Read more

Summary

Introduction

As the mobile terminals become smaller while meeting their demand for communication with even higher data rate, the future wireless communication signals should satisfy high bandwidth efficiency without sacrificing power efficiency. Orthogonal frequency-division multiplexing (OFDM) signaling has gained significant attention due to its high bandwidth efficiency and robustness against frequency-selective fading channels. Its well-known drawback is the high peak-to-average power ratio (PAPR) property of the resulting signals. High PAPR signal is difficult to amplify without sacrificing its power conversion efficiency at the linear power amplifier (PA). In order to maximize PA efficiency, it is essential to adjust the input signal to be amplified mostly around the saturation region.

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.