Abstract

Multiphoton laser scanning microscopy (MPLSM) has been adapted to non-invasively characterize hand-held powdered epidermal vaccine delivery technology. A near infrared femtosecond pulsed laser, wavelength at approximately 920 nm, was used to evoke autofluorescence of endogenous fluorophores within ex vivo porcine and human skin. Consequently, sub cellular resolution three-dimensional images of stratum corneum and viable epidermal cells were acquired and utilized to observe the morphological deformation of these cells as a result of micro-particle penetration. Furthermore, the distributional pattern of micro-particles within the specific skin target volume was quantified by measuring the penetration depth as revealed by serial optical sections in the axial plane obtained with MPLSM. Additionally, endogenous fluorescence contrast images acquired at the supra-basal layer reveal cellular structures that may pertain to dendritic Langerhans cells of the epidermis. These results show that MPLSM has advantages over conventional histological approaches, since three-dimensional functional images with sub-cellular spatial resolution to depths beyond the epidermis can be acquired non-invasively. Accordingly, we propose that MPLSM is ideal for investigations of powdered epidermal vaccine delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call